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Abstract

Micro-architecture design of a processor plays an important role to meet power,

memory latency and execution time requirements of modern applications. Mem-

ory latency is one of the major challenges which directly effects the efficiency of

the microprocessor. Prefetching is the predictive technique that is used to popu-

late the data in cache from main memory to solve the latency issue. Runahead

execution is a prefetching technique that benefits the most where long full window

cycles occurs due to last level cache misses.

Full window stall was previously calculated for SPEC CPU2006 benchmark and

runahead execution technique is being used in the application area where stall

value is very large. During the evolution of runahead execution from 2006 to

2021, the hardware has been modified in the microprocessor to make this tech-

nique more efficient. This modified hardware has increased the design complexity

as well as the power consumption. The need of finding the suitability of using

runahead execution technique for modern applications has emerged.

SPEC CPU2017 is the successor of SPEC CPU2006 that represents the mod-

ern applications i.e., compiler, artificial intelligence, discrete event simulation etc.

The algorithm of finding the full window stall has been proposed and validated

by regenerating the stall values from SPEC CPU2006 and comparing it with the

previous findings. Afterwards, full window stall cycles are calculated using SPEC

CPU2017 for almost all the integer benchmarks i.e., gcc, omnetpp, perlbench, mcf

etc. Sniper simulator is being used and modified to calculate the stall cycles by

running the latest SPEC CPU2017 benchmark simulation points. Our results

indicated a very high percentage of full window stall cycles in some specific bench-

marks like gcc (67%) and omnetpp (31%) but mostly the stall cycles are very low

for rest of the benchmarks i.e., perlbench (12%), xz (6%), x264(5%), mcf (4%),

leela (2%). The allocation of resources to a microprocessor is being done based

on the calculated full window stall percentage. Based on the characterization, the

simulation results shows that if the processor is to be used in the discrete event

simulation or compiler based application domains, a runahead enabled processor is
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recommended for better performance. On the other hand, if the domain of appli-

cation resembles mostly with compression, artificial intelligence and combinational

optimization then runahead enabled processor will not be the optimal choice.
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Chapter 1

Introduction

1.1 Background

The use of computer controlled automated systems is increasing day by day in

almost all type of industries around us. The main controlling element of these

automated systems remains a small chip known as “Microprocessor”. The use of

these microprocessors does not remain limited to the industrial control but also

surrounding us in our living environments. If we look around ourselves, various

types of Microprocessors are present like in our mobile sets, personal comput-

ers/Laptops, automated washing machines, kitchen appliances, cars, trains and

airplanes etc.

Multidisciplinary natured requirements of the industry from the microprocessors

causes an extensive research on these controlling devices to introduce new featured

elements of high performance, low power, compactness, resourcefulness, security

and other specialized customizations. The research in computer architectures has

radically changed the world by offering a range of devices, from simple types of

hand-held computing gadgets to scalable supercomputers.

Many high-performance computing centers are now moving to heterogeneous so-

lutions consisting of general purpose CPUs along with streaming accelerators like

GPUs and reconfigurable devices. Other heterogeneous architectures like Micro-

processors inside reconfigurable logic inside Microprocessors have also gained a

1
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wide range of marketplace and attention from the scientific community.

Main memory latency is the key bottleneck to improve processor performance. Out

of order processing tolerates these long latencies, provided that instruction com-

mit will be done in program order to handle precise exceptions, by buffering the

instructions in the instruction window. However, instruction window eventually

becomes full if top of the instruction window is filled by long-latency instructions

resulting in stalling of processor. This is known as full-window stall.

Several researchers have proposed runahead execution technique to upswing pro-

cessor performance when long latency cache misses are encountered [1], [2], [3], [4],

[5], [6], [7], [8]. Whenever a full window stall occurs due to a last level cache miss,

the processor saves the execution state i.e., architectural registers, branch history

register and return address stack. The processor marks the load instruction that

caused the stall as invalid (INV) and its dependent instructions are also removed

from the instruction window.

The processor speculatively executes the independent stream of instructions to

request maximum data prefetching from the main memory. Once the load in-

struction that caused the stall is being serviced with the data that was requested

from memory controller, the processor exists the runahead mode and starts the

normal execution mode.

The performance improvement is demonstrated by comparing the response of pro-

cessor under full-window stall and during runahead mode. All types of instruction,

that is load, store, branch and execute are used in analysis. Simulations are done

using out of order processor with 128 reorder buffer (ROB) entries and 2048 entries,

so that effect of the reorder buffer size on processor performance can be analyzed

for full-window stall, by using SPEC CPU2006 and SPEC CPU2017 benchmark

suites.

Benchmarking is mostly use by computer architects to validate designs. For com-

puter architects the Standard Performance Evaluation Corporation (SPEC)’s 5th

generation benchmark suite, known as SPEC CPU2006, are the de facto bench-

mark suites for their processor design analysis [9]. However the newly released

SPEC CPU2017 benchmark has gained attention because of its large workloads

and instruction mix [10].
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Table 1.1: Integer VS floating point benchmarks

S. No Integer benchmarks Floating-Point benchmarks

1
Integer operations per
instruction

Floating point operations per
instruction

2
L1 instruction cache misses per
instruction

Memory references per
instruction

3
Number of branches per
instruction

L2 data cache misses per
instruction

4
Number of mispredicted
branches per instruction

L2 data cache misses per L2
accesses

5
L2 data cache misses per
instruction

Data TLB misses per
instruction

6
Instruction TLB misses per
instruction

L1 data cache misses per
instruction

SPEC CPU2017 has remodeled benchmarks of CPU2006 and also added new work-

loads to meet modern application demands. The coverage area of CPU2017 is

much more than CPU2006 in terms of workload design space [11]. These complex

workloads are responsible of very high percentage of full-window stall. Instruction

mix and memory intensive workload provided in SPEC CPU2017 helps in perfor-

mance characterization of processor for full-window stall and runahead mode.

1.2 Benchmarks

A benchmark is the testing program that perform the set of well defined oper-

ations and it is used To evaluate the performance of a processor architecture.

A performance matrix defines how the tested architecture performs a particular

benchmark. Standard benchmarks are being used worldwide for comparison of

different architectures. We used standard benchmarks i.e., SPEC CPU2006 and

SPEC CPU2017 to evaluate the performance of processor architectures.

This method is used to not only find the subsets from any benchmark but also to

check the similarities and the differences in a suite to get the cluster having similar

features as a potential suspect for experiment or study [12]. These benchmark

suites are released by Standard Performance Evaluation Corporation in 2006 and

2017.
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1.2.1 Why Use SPEC06 ?

The SPEC CPU 2006 benchmark suites was the industry standard before SPEC

CPU 2017 which was used for the comparison of high performance computers.

These are the platform independent benchmarks so that it can be tested on differ-

ent high end processors by putting the same workload to get the better comparison.

There are some examples of different high end processor which are being ranked

after using SPEC i.e., AMD Opteron, Intel Xeon, Intel Itanium, SPARC, IBM

Power7.

Due to their target independency these benchmarks are very easy to use as it

does not require any additional investment in environment apart from the cross

compilation. These benchmarks can also be used to investigate the multicore ar-

chitecture behavior like some cores are faster than others so, some processor with

few of faster cores works more efficiently than the processor having more cores but

slower. By just having the knowledge processor speed and the cores with it one

can’t determine the speed of processor. SPEC CPU 2006 benchmark compares the

performance of processors on two different basic workload categories as mentioned

in Table 1.2.

Table 1.2: SPEC CPU2006 Benchmark Details

S. No Benchmark Source Code Application Area
1 astar C++ Path Finding Algorithms
2 mcf C Combinational Optimization
3 omnetpp C++ Discrete Event Simulation
4 perlbench C Programming Language
5 xalancbmk C++ XML Processing
6 sjeng C Artificial Intelligence: chess
7 hmmer C Search Gene Sequence
8 h264ref C Video Compression
9 libquantum C Physics / Quantum Computing
10 bzip2 C Compression
11 gcc C Compiler
12 gobmk C Artificial Intelligence: Go

The first workload category is the one in which the performance of processor is

evaluated on the basis of compute-intensive integer mathematical operations which
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are mostly used in business applications. Other workload category is compute-

intensive floating-point mathematical operations, these type of workloads refers to

the applications which are related to the scientific calculations. SPEC CPU 2006

was famous industry level simplistic benchmark to evaluate the performance of

various processors with different architecture having same workload.

As SPEC CPU 2006 benchmark has two main categories as described above, for

intensive-integer mathematical operations category workloads there are 12 bench-

marks named as SPEC int2006 which were used for testing performance. Processor

can be evaluated by speed which usually runs on a single core processor or through-

put rate which usually checks the performance of the whole processor e.g. speed

benchmarks consists of tasks which are independent of each other and the core

with faster execution will be able to perform better while on the other hand over-

all throughput can be calculated by assigning a dependent sets of tasks to whole

processor having multiple cores in it.

SPEC CPU 2006 uses some of workloads to compare the processor speed to com-

plete a single task assigned to a single core e.g. SPECint 2006. While some

other workloads are used to compare the number of tasks a processor can com-

plete in specified time span e.g. SPECint rate 2006 benchmark. Contrary to this

SPECfp(Floating point benchmarks) is designed which evaluates processor perfor-

mances with floating point work load. For intensive-floating point mathematical

operations, SPECfp 2006 has 17 benchmarks for this category for testing purposes

[4], [5].

1.2.2 Why Use SPEC17 ?

SPEC CPU2017 is most popular and modern industry standard benchmark suite

released by Standard Performance Evaluation Corporation in 2017 as shown in

Figure 1.1. It is also designed for the same purpose as SPEC CPU 2006 to evaluate

the performance by testing to stress on a system’s processor. The real world

scenario applications like artificial intelligence workloads has been added to better

analyze the modern processors whether they meet the modern requirements or

not.
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Figure 1.1: SPEC Benchmark Evolution

These workloads can be ported to architectures of different designs and can be

tested and evaluate them which could not be possible in case of machine dependent

suite. Like SPEC2006, this benchmark suite also evaluate performance in different

ways using different type of workloads. It also contains the compute intensive

integer mathematical operations as well as floating point operations. It is divided

into four categories with total of 43 benchmarks as mentioned in Table 1.3. These

are SPECspeed 2017 integer, SPECrate 2017 integer, SPECspeed 2017 floating-

point and SPECrate 2017 floating-point. SPECspeed 2017 integer are used to

calculate the performance of single cores which includes the integer operations.

Likewise SPECrate 2017 integer benchmarks are used to calculate the performance
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Table 1.3: SPEC CPU2017 Benchmark Details

S. No Benchmark Source Code Application Area

1 exchange2 Fortran
Recursive solution generator
(Sudoku)

2 gcc C GNU C compiler
3 leela C++ Monte Carlo tree search (Go)
4 mcf C Route planning
5 omnetpp C++ Discrete Event simulation
6 perlbench C Perl interpreter
7 x264 C Video compression
8 xz C General data compression

of whole processor which includes multiple cores in it. The same is the case for

the rest of the two categories but the operations used in these ones are floating

point.

These suites are different because of compilation rules, run rules and memory

consumption etc. Tester can run a benchmark in each suite, and this can be done

on multiple architecture with multiple cores. SPEC CPU 2017 is considered as

major update from SPEC in past 10 years. So, this benchmark allow user to use

OpenMP with parallelized architecture to measure the performance on multiple

cores and also provide a metrics to calculate power consumption. SPEC2017 has

four suites as described above, SPECspeed measure how much time is taken by

the processor to complete a task in each suite. While SPECrate demonstrate the

number of tasks done in specific time by the particular processor which includes

all the cores in it.

1.3 What Is Runahead Execution ?

Memory latency wastes a lot of processor cycles in getting the desired data from

main memory in case of last level cache misses. To reduce the memory latency,

prefetching techniques are being used that predicts the data which is likely to

be used in future is fetched from main memory and place it into cache as shown

in Figure 1.3. Out of all the prefetching techniques, one of the most accurate

prefetching techniques used for prefetching is runahead execution.

It is a technique which saves the processor stalling issue which is caused by the
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Figure 1.2: Full Window Stall Degrades Performance

load instruction miss from last level cache as shown in Figure 1.2. Whenever the

instruction windows gets filled by processor stalling state, the processor enters into

the runahead mode and execute the next instructions speculatively to execute the

load instructions as much as it can, so that maximum requests can be sent to the

memory controller for any missing load instruction. In this way, the execution time

gets saved from accurate data prefetching before it is even used by the program.

It is initially used with in order microprocessor [1] and later on as the processors

internals get modified as out-of-order execution introduced this technique is being

further modified and used [13].
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Figure 1.3: (a) prefetching (b) cache misses

Several researchers have proposed runahead execution technique to upswing pro-

cessor performance when long latency cache misses are encountered. The processor

follows the long latency queues whenever the stall occurs, to avoid the stalling pro-

cessor checkpoints the architectural register state, return address stack and branch

register and remove the long-latency instruction (which caused the stalling) from

instruction window.

All subsequent long latency dependent instructions are identified as invalid (INV)

while only independent instructions are buffered in instruction window. Once the

instruction which caused the full-window stall is being serviced by the memory
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controller the processor exits the runahead mode. The performance improvement

is demonstrated by comparing the response of processor under full-window stall

and during runahead mode.

1.4 Thesis Objective

This dissertation focuses on the usage of SPEC CPU2006 and SPEC CPU2017

benchmark suites for the investigation of full-window stall. To achieve the aim of

the work, the following objectives are outlined:

1. To calculate the full window stall in SPEC 2017 benchmark.

2. To analyse SPEC 2017 benchmark with respect to runahead execution.

3. To perform processor characterization based on Full Window Stall.

4. To propose the usage of runahead execution in application specific proces-

sors.

1.5 Research Contribution

This thesis makes the following contributions:

1. To find the full window stall we have proposed the algorithm which calculates

the stall cycles when the instruction window is full. We used SPEC CPU2006

and SPEC CPU2017 benchmark suite to investigate full-window stall and

compare the two benchmark suite for performance characterization.

2. Sniper simulator does not have the support to calculate full window stall.

We have modified the sniper simulator to calculate the full window stall by

modifying the source code of the simulator.
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3. We have validated the algorithm by calculating the full window stall cycles

by running SPEC CPU2006 benchmark and compared the results of full

window stall from previous findings of SPEC CPU2006.

4. After the validation of algorithm, we have calculated full window stall cycles

by running SPEC CPU2017 benchmark. Instruction mix is calculated for

each benchmark to analyze its full window stall characteristics.

5. We have characterized the processor types based on calculated full window

stall cycles in the respective application area and gave the suggestion for the

usage of runahead execution.

1.6 Thesis Overview

The simulated processor uses ROB of 128 and 2048 entries to verify the statement

proposed by [2] that by increasing the instruction window the problem with the

stall will solve. The reading were correct and the stall problem gets solved but the

solution is too much expensive as it requires a the instruction window to increase

which increases the complexity of design, consume more power and the die size

of the processor will increase. It proved that the need for runahead technique is

more efficient for the processors spending more time in stalling condition.

Simulation environment uses two different cache types i.e., Real Last Level Cache

(in which every read/write transactions may hit or miss the last level cache) and

Perfect Level Cache (in which every transaction will hit in last level cache). This

configuration is needed to further confirm that the stall occurs every time when

the last level cache is missed. The experimentation proves that the stall problem

gets resolved when the perfect last level cache was used.

Furthermore, the experimentation is done using SPEC CPU 2006 and SPEC CPU

2017 on the above mentioned processor configurations and found out the full win-

dow stall percentage for both of the benchmark suites. In this way, it can be found

out that whether we still need the runahead technique for the modern workloads

or it is not an optimal solution for modern applications. We have selected 8 integer

benchmark of CPU2017 among them 4 (leela, exchange2, x264 and xz ) are newly
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added [14]. Likewise we selected 12 integer and 1 floating point benchmark from

CPU2006.

The results shows that the benchmarks of SPEC CPU 2017 specially GCC and

Omnetpp have high runahead opportunities to enhance the performance of the

processor as the full window stall percentage is very high i.e., gcc (67%), omnetpp

(31%). But for the other benchmarks used for the experimentation has less than

10% full window stall occurrences. It is because the other benchmarks that were

being under experimentation are related to compression and artificial intelligence

application domains. This shows that the modern application does have an in-

crease need of AI/ML based applications which has the data placed in the memory

with sequential locality.

As a result of which, the normal prefetchers like stream prefetcher works well.

This is the reason why in modern applications, full window tall occurrences are

low. On the other hand, in SPEC CPU 2006 the opportunity of using runahead

enabled processors is very high as the full window stall occurrences are very high

in these benchmark suites. It is because, it is an old benchmark suites which does

not have more AI/ML application domains.

As a conclusion, we have divided the types of processors based on the application

usage i.e., we suggest to use runahead enabled processors which will be used for

compiler and discrete event simulation application domain. On the other hand, if

the application domain is AI/ML based which includes the training of data sets,

using runahead enabled processors will not be an optimal choice.



Chapter 2

Literature Review

2.1 Introduction

There is a lot of prior work done in which runahead execution is used to enhance

the performance of processors which was being analyzed by running different SPEC

benchmarks i.e., SPEC CPU 2000 and SPEC CPU 2006. Enhancing the interval of

runahead execution can improve the performance as examined by running SPEC

CPU2006 benchmark suite after implementing the technique [8]. Benefit from

Memory Level Parallelism (MLP) can be enhanced by storing dependence chain

of cache misses and execute the load instructions that is coming in the path of the

program [7].

As in the runahead mode, there is a limited time in which maximum load instruc-

tions should be executed and cache miss should occur as much as possible which

will increase the performance. Reference [15] tackles the short coming of prior

work and suggest a novel approach to utilize free processor resources to execute

the dependence chain of long latency cache miss operation in runahead mode to

avoid the pipeline flush.

In SPEC CPU2006, about 70% of the time the processor is in full window stall

mode [2] also shown in Figure 2.1. Also, with different machine configuration

about 47% of the time the processor spends its time doing nothing [15]. There are

a lot of other researchers that calculate the full window stall for SPEC CPU2006

13



Literature Review 14

Figure 2.1: SPEC06 Full Window Stall

[7] [8] [5] [16]. An initial implementation of runahead execution has been proposed

by [2] and later on the runahead interval has been further optimized by [3].

As shown in Figure 2.2 a basic initial architecture has been proposed and then

further optimized by the later technique. It has been proposed to use this tech-

nique in gcc (compiler) and mcf (combinational optimization) domain. Then [7]

proposed the hybrid technique to improve the runahead execution furthermore by

calculating and storing the dependence chains and executed them only while in

runahead mode. The flow diagram of this hybrid policy can be seen in the Figure

2.6.

Furthermore [8] introduced a novel hardware engine which calculates and stores

the stalling loads and this improves the runahead mode usage. The proposed

accelerator is shown in figure 2.3. Later on, in 2018 [15] further increased the

performance of runahead execution technique by efficiently saving and restoring
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Figure 2.2: Initial Runahead Execution Architecture

the pipeline of microprocessor. The block micro-architecture proposed above is

shown in Figure 2.4. In 2021, [17] proposed a technique to accumulate all the

independent stalling loads into a vector and stall the processor at once so that the

prefetching can be done in more accurate way. The proposed micro-architecture

block diagram is shown in Figure 2.5.

All of the techniques discussed above has been evolved from 2006 to 2021. This

evolution increase the hardware complexities as well as the power consumption

and die size. These techniques has been tested and validated on the older bench-

marks i.e., SPEC CPU2006 which got retired in 2018 and does not represent

modern application needs [10] [11]. These techniques has been used and improved

the microprocessor efficiency in the area of mcf (combinational optimization), gcc

(compiler), perlbench (programming language), libquantum (quantum comput-

ing), omnetpp (discrete event simulation), xalancbmk (xml processing) and bzip2

(compression) of SPEC CPU2006 benchmark.
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Figure 2.3: CRE Proposed Hardware Engine

Previously, runahead execution is evaluated on memory intensive SPEC CPU95,

CPU2000 and CPU2006 benchmark suite. The latest variant from SPEC corpo-

ration is SPEC CPU2017 benchmark suite that is characterized by the instruc-

tion mix, branch prediction and cache memory behavior. The recent release of

CPU2017 contains 43 benchmarks with about 10X times more dynamic instruc-

tion count than CPU2006, which can greatly increase the simulation time. Mostly

subset of benchmark suite is used for analysis to reduce simulation time i.e., Sim-

points is used for the experimentation.

As a result of our research, we come to know that is one of the significant at-

tempt to find the full window stall using SPEC CPU2017 suite. Using the re-

vamped workload of CPU2017 and CPU2006 we have furnished a comparison of

full-window stall using both benchmarks. We analyze the similarities and differ-

ence of CPU2006 and CPU2017 benchmark suites. We explore the opportunities
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Figure 2.4: Precise Runahead MicroArchitecture

Figure 2.5: Vector Runahead Micro-Architecture

of performance improvement using runahead execution.

This is the first work to produce the results of full-window stall using SPEC CPU

2017 benchmark suite. As the SPEC CPU 2017 is being recently released on which

there is a gap of improving or analyzing the benchmarking results of processor.

For this purpose, full window stall calculation is being done on using this bench-

mark suite and the opportunity or feasibility of using the runahead technique is

being explored. So that, with modern workload the processor design should be

optimized to meet the new requirements [13].
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Figure 2.6: Hybrid Policy Flow Chart

2.2 Survey of Simulators

Numerous simulators have been created by computer architects over few decades,

and the number is expected to keep rising. Simulators are classified according to

the amount of detail in the simulation, the scope of the objective, and the input

to the simulator.
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2.2.1 Functional vs. Timing Simulators

Functional simulators represent simply the target’s functioning; they do not repli-

cate microarchitectural details. Simics [18] and SimpleScalar [19] both have ’sim-

safe’ and’sim-fast’ models that support x86.

An accurate simulation of a computer system’s timing/performance is provided by

a timing simulator (sometimes referred to as an operational simulator). When a

benchmark is running on a simulated CPU, cycle-level simulators maintain track

of every single clock cycle. As a result of the time and resources required to keep

track of so much information, functional simulators and other kinds of timing

simulators are faster [20].

2.2.2 Application-Level vs. Full-System Simulators

An Application/User Mode Simulator is able to run just target programs rather

than a whole operating system. As a result, they must model a CPU with just a few

peripherals. Requests for system services made by simulated applications/bench-

marks skip the user-level simulation and instead are handled by the underlying

host OS. Because the execution of system-level code takes up so little time in

computationally complex benchmarks like SPEC CPU [21], relying only on the

simulation of user-level code may not be a concern. Simulators at the application

level are often simpler, although they may exhibit errors owing to the absence of

system-level code support. Full system simulators, on the other hand, may create

a virtual copy of the target’s OS. Simulated I/O devices are also used to boot an

operating system.

2.2.3 Trace-Driven vs. Execution-Driven Simulators

Trace files are used as inputs in trace-driven simulators. Streams of instructions

from a program’s execution on actual hardware may be found in these files. Sim-

ulators that don’t need to imitate the target’s ISA are reasonably easy to build.

There is a drawback to trace-driven simulators that their produced trace files may
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be extremely big in size, and reading these huge files from disc can be sluggish.

Utilizing trace sampling and reduction methods, this problem may be remedied

[22].

Whereas in an execution based simulator, the simulated machine immediately

executes the benchmark’s instructions. At the same time as the software is run-

ning, several performance-related factors are being analysed. These simulators, as

opposed to those that rely on tracing, are capable of simulating erroneous code

paths. Due to rapid forwarding of time, they are more difficult to execute than

trace-driven simulators and might need more time if statistical sampling is utilised.

2.3 Sniper Simulator

Sniper simulator is being used to simulate the behavior of the processor. Using

the simulators makes the testing easy for proposed changes as it does not require

fabricating new processors. New changes can be incorporated into the simulator

and can be tested by running SPEC benchmarks on it. Once the experimentation

will be done and tested, the proposed changes can be actually fabricated to the

microprocessor chips.

Mostly simulation is used for high-risk experiments, safety test and scientific ex-

ploratory experiments. This simulator also incorporates the 3D visualization of

thermal maps for machine under test.With the help of simulation environment the

phenomena can be tested before it is being used in real world scenarios. Also by

having simulation before the fabrication process of processors also helps find the

potential problems which might occur in future.

Sniper is high speed, parallel and accurate x86 next generation simulator [2]. It

provides the functionality to conduct simulations for both multicore programming

(OpenMP) in multiple core systems. This flexibility allows us to test the bench-

marks for single core as well as multicore processors. It gives fast and accurate

simulation for same (homogeneous) and different type (heterogeneous) of archi-

tectures if compared with existing simulators.

It relies on internal simulation which increases the level of abstraction that allows
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faster development and testing or proposed architectural changes and consume

less evaluating time by jumping between intervals [23]. Another benefit of using

sniper is that it allows the visualization of CPI stacks, which represents the con-

sumption of each cycle and make the tester to be able to better understand the

actual performance of each component and to measure the effectiveness of each

component on net performance. SPEC CPU2017 benchmark suite is characterized

by the instruction mix, branch prediction and cache memory behavior.

It is very difficult and hard to visualize the parallel performance of sniper in insight-

ful way. So, sniper’s parallel execution can be visualize by two representations.

The first one is CPI stacks and the other is Thread-state timelines. We have used

CPI stacks to understand the cycle consumption.

The processor performance can be represented by total number of instructions

that specific processor can execute in one clock cycle of processor or it can be

expressed by the CPI which means average cycles an instruction may takes. CPI

further can be divided into many small components which individually express the

performance of its own [24].

2.4 Overview of CPU Benchmarks

Benchmarks facilitate comparisons across various CPUs by evaluating their per-

formance against a defined set of tests, and they are beneficial in a variety of

situations such as when purchasing or constructing a new computer.

Benchmarks developed in the past have been unable to adequately describe the

performance of current computer systems. Several of those benchmarks quantify

component performance, while others are commonly presented as system perfor-

mance [25].

2.4.1 Simple CPU Benchmarks

Simple CPU benchmarks are classified into three categories: kernel, synthetic, and

application [26].
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1. Kernel benchmarks are based on study and the understanding that in the

majority of situations, 10% of code consumes 80% of CPU resources. Perfor-

mance investigators have obtained and exploited these code parts as bench-

marks.

2. Synthetic benchmarks are created based on the expertise and understanding

of performance experts about instruction mix. Dhrystone and Whetstone are

two examples of synthetic benchmarks. Certain previous assumptions about

instruction mix are rendered outdated by new technology and instruction

set designs. Synthetic benchmarks present challenges that are analogous to

those seen in kernel benchmarks.

3. The best benchmark, from the user’s viewpoint, is the user’s own applica-

tion software. Spice (for circuit designers) and the GNU compiler are two

examples of application benchmarks (software developers using GNU en-

vironments). Regrettably, thousands of programmes exist, and the most of

them are proprietary. A benchmark suite with a large number of programmes

is likewise impracticable due to porting and assessment challenges, as well

as the lengthy runtime.

2.4.2 Aging CPU Benchmarks

Aging CPU benchmarks are classified into three categories: Dhrystone, Linpack,

and Whetstone [27] [28].

1. Reinhold Weicker invented Dhrystone in 1984. This synthetic benchmark

devotes a substantial amount of time to string functions. It was created

to evaluate the integer performance of basic architectures on tiny devices.

RISC processors often outperform CISC machines on this test because to

the high number of registers and the locations of code and data on RISC

machines. Dhrystones per second is the performance statistic.

2. Linpack is a set of linear algebra subroutines first published in 1976 by Jack

Dongarra. It is used to quantify a machine’s floating-point performance.
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This benchmark utilises a matrix of size 100x100, which was considered a

big matrix in 1976. The application is small enough to fit easily in the caches

of several computers. Millions of floating-point operations per second define

its performance (MFLOPS). Single- and double-precision MFLOPS are used

to quantify performance.

3. Whetstone is a well-known synthetic floating-point benchmark that was cre-

ated in 1976 by H. J. Curnow and B. A. Wichman. It consists of eight

modules that carry out various numerical calculations (e.g., arrays, trigono-

metric functions). The benchmark is compact and highly dependent on the

sequence in which library modules are loaded and the amount of caches.

Single- and double-precision Whetstones per second are used to quantify

performance.

2.4.3 Overview of SPEC Benchmark Suites

The performance of current computer systems cannot be accurately measured us-

ing conventional benchmarks. For example, some benchmarks assess component-

level performance, while others measure overall performance. For a long time,

suppliers have used a wide range of ambiguous metrics to describe the perfor-

mance of their systems. Confusion is exacerbated by a scarcity of reliable data on

performance, a lack of consensus among competing providers, and a lack of clear

leadership [29].

In October 1988, Apollo, MIPS Computer Systems, Hewlett-Packard, and SUN

Microsystems teamed together with E. E. Times to create the Standard Perfor-

mance Evaluation Corporation (SPEC). SPEC develops, manages, distributes, and

approves a standardised collection of application-oriented programmes for bench-

marking purposes [25].

The performance of a computer system cannot be quantified in terms of a single

metric or benchmark. Using a single benchmark to characterise a system’s perfor-

mance is analogous to the proverbial blind man describing an elephant. However,

many users (decision makers) want a single-number assessment of performance.

The client is confronted with a bevvy of perplexing performance data and the
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press’s unwillingness to share detailed performance and configuration details. No

question has a straightforward answer. However, both the press and the consumer

must be educated of the danger and foolishness of depending on a single perfor-

mance metric or a single benchmark.

Customers have been unable to assess and compare rival systems because computer

manufacturers could not or would not agree on a consistent set of benchmarks.

Vendors, software developers, and system designers have all had difficulties due to

the absence of benchmarking standards. When comparing benchmarking results,

there is no such thing as an absolute truth.

These problems were first addressed by SPEC through the selection and develop-

ment of real application benchmarks that put major system components to the

test. Do we require only one benchmark or are there a number of other ones that

we may use? What kind of workload is optimal for showcasing a certain system?

What is system performance, and how can we objectively assess the performance

of various computer systems?

Many different techniques, architectures, implementations, memory units, I/O

subsystems and operating systems were compared in order to see how they af-

fected system performance as well as clock rates and bus protocols. With many

CPUs and peripherals, additional issues had to be taken into account. Other as-

pects, like as graphics and networking, exacerbated the problem.

The performance of raw hardware is determined by a number of elements: CPUs,

floating-point units (FPUs), I/O, network and graphics accelerators, memory and

peripheral systems. All benchmarks had to be converted to all SPEC members’

computers in order to ensure that the same source code (machine-independent)

would execute on all SPEC members’ workstations. This proved to be a difficult

undertaking.

Conflicts about portability are handled during SPEC bench-a-thons by SPEC

members. Engineers from SPEC member firms participate in a five-day bench-a-

thon to create benchmarks and tools that can be used on any operating system

or platform. To conduct the test, SPEC used a simple metric known as elapsed

time. It was only via the use of machine-independent code and a basic speed

measure that we were able to conduct an accurate comparison of rival computers
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[30]. Till date, SPEC has introduced number of benchmarks before reaching to

the latest benchmark (i.e., SPEC CPU 2017). The SPEC CPU benchmark suites

are summarised in Table 2.1.

Table 2.1: SPEC CPU Benchmarks

Current Benchmarks

SPEC CPU 2017
The most recent version of SPEC’s widely used CPU
performance tests. It was published in June 2017.

Retired Benchmarks

SPEC CPU 2006
The predecessor of the current series of CPU
performance testing.

SPEC CPU 2000
In February 2007, it was retired as a frequently used
CPU performance test.

SPEC CPU 95
CPU 2000 was released in December 1999,
rendering it obsolete.

SPEC CPU 92
CPU 95 was released in August 1995, and SPEC
CPU 92 immediately became obsolete.

SPEC CPU 89 Successor to the CPU 92 suites, which are now extinct.

2.5 Memory Latency

Memory latency is the amount of time it takes for a processor to retrieve a re-

quested byte or word from memory. Interferences between requests coming from

different cores may increase the Latency of Memory accesses, affecting the overall

system throughput. To address the issue, many techniques for reducing latency

are available, which are mentioned below.

2.5.1 Reducing Latency By Prefetching

Generally, the distribution of hardware prefetching is divided into two categories.

Prefetchers as shown in Figure 2.7 that indicate bases of future address that is

based on memory access patterns and other ones are the prefetchers that depend

on pre-execution of code segments provide by the application. So, the second type

of prefetchers are discussed here that uncover steams [14] that require a small

hardware which can increase the cost and complexity of the hardware. To de-

crease the data access latency for show-able data access patterns, pre-fetchers are
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used.

Figure 2.7: A Simple Prefetcher Concept

The addition of pre-fetchers cannot be used to handle complex access patterns

which leads to the inaccurate pre-fetch requests and results in wastage of mem-

ory bandwidth and cache pollution. There is also the need of advance hardware

pre-fetchers techniques like correlation pre-fetching aims to decrease the average

memory accesses level for more unpredictable misses [14] [4]. These pre-fetchers

are used to maintain work at large on clip tables that are used to relate past cache

miss addresses in the future cache miss addresses.

The two-level indexing scheme is used to decrease the need of correlation tables

and for that purpose global history buffer (GHB) was formed. For decreasing the

need of on chip storage some pre-fetching techniques are used [14]. These propos-

als are used to incur additional cost of transmitting meta data over the memory

bus. The focus of the technique is to increase the on chip mechanisms to decrease
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memory access latency. On the other hand,, hardware mechanisms target that

points that is useful to lead cache misses. During the traverse of linked data struc-

ture, jump pointer is used to create the memory level parallelism [14].

They also identified the difference between pointer on the basis of stable depen-

dence patterns and store this information in correlation table. On another side

content directed pre-fetching does not need any store pointer of additional state,

it can work through pre-fetching de-referencing values that could be memorized

addresses.

In that case all the cache miss addresses are not easily predicted by pre-fetching

and the word dependent on the accelerating dependent target addresses are dif-

ficult to pre-fetch. According to this research at creation of independent cache

misses, pointers are dynamically used for the application code to pre-fetch.

2.5.2 Reducing Latency By Pre-Execution

The backend of processor is stalled because of reorder buffer in runahead Execu-

tion [14]. In this state, the backend is stalled and the frontend continues to do its

part i.e., fetch the instructions. This is because, the speculation execution of the

future instructions will save the cache misses in the future i.e., memory level par-

allelism will be more utilized in this case. Traditional runahead Execution always

needs front end to fetch the instructions which are likely to not create the cache

misses in the future.

It means that, when the processor enters in runahead mode it speculatively exe-

cutes the instructions (including all the instructions which are not useful for the

future execution). This consumes processor power and resources. It is showed

that the memories can be stored in a separate buffer by solving the dependence

chain in which case the processor will execute the instructions that are needed to

be executed.

This allowed to create EMC all times from the continues work of runahead but it

does not only work when the core is stalled. Pre-execution is done via compiler

or hand generated code segments. All the memory pages are attempted according

to pre-fetch by the using of compiler or hand-tuned portions of code to create the
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demand access stream [5] [14].Special hardware is used to save these threads or on

a different core of a multi-core processor.

Compiler is required to free the hardware thread which will be used to analyze

and create helper thread contexts or execute them. In other words, helper threads

can also be created through manual work. To generate helper Threads Kim and

Yeung also discussed the similar concepts proposed in techniques for the static

code compilation of Executor schemes, whereas the computation loop is preceded

by an inspector loop that is used to prefetch data.

The techniques of dynamic compilation and hand-generated helper code have also

been designed to run on idle-cores of a multi-core processor. These all are based on

the idea of statically generated pre-execution proposals of decoupling the memory

access stream from the application of execution stream [3].

According to these ideas and methods these mechanisms are proposed that allow

the dynamic generation of dependence chains. With this chain we do not need

resources like free hardware cores or free thread-contexts.

Memory controller will be preferred to contain the specialized functionality and it

required to execute these dependence chains.

Speculation via automatically generated helper threads is limited. It also needs to

execute from the main-thread. This work is done by using a proper version of the

main-thread by the help of this version the helper-thread can run faster than the

main-thread so there is no need of informative files, that is why they are removed.

First, there are two processors that are used to execute an application slipstream.

This process works through the related version of the application ahead of the

R-stream. After that, A-stream is used to communicate performance hints such

as branch-directions or memory addresses for prefect tolerance.

However, these instructions that are being removed from slipstream are generally

simple. Slipstream only removes unusual writes like the stores that are never ref-

erenced and stores that do not modify the state of a location. For the completion

of other work, they have used a similar two-processor architecture but it does not

allow the A-stream to stall on cache misses.

Second, Collins et al. proposes a dynamic scheme to automatically extract helper

threads from the back-end of a processor. To do so, they require large additional
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hardware structures including a buffer that is twice the size of all retired operations

that are through this buffer. Once the helper threads are generated, they must

run on full SMT thread contexts. This requires the front-end to fetch and decode

operations and the SMT thread contends with the main thread for resources. An

8-way SMT core is used in their evaluation [8].

Third, Annavaram et al. [14] add hardware to extract a dependent chain of oper-

ations that are likely to result in a cache miss from the front-end during decode.

These operations are prioritized and execute on a separate back-end. This re-

duces the effects of pipeline contention on these operations, but limits runahead

distance to operations that the processor has already fetched. They also proposed

a lightweight solution to dynamically create a dependence of it.

2.5.3 Reducing Latency By Near Memory Computation

The data through pelagic and memory fabricated is also used to same process as

the data used in rechecking of reducing data. The proposed performance com-

putation inside the layer of logic word as a 3d stacked ram but none of them

is specialized to accelerate as target depends on cache misses. The proposal is

again vested by Micron’s 3D-stacked Hybrid Memory Cube (HMC) to propose

performing graph processing in an interconnected network of HMCs by changing

the programming model and architecture forfeiting cache coherence and virtual

memory mechanisms [14].

The data elements for prefetching are further to decide clip to build the large

prefetching correlation for the memory if using the memory side logic proposed by

Alexander et al. and Solihin. This is generally known as split computation for the

one hand chip and other chip is allocated to compute, due to which the cost of

data and data across the ram bus increased. This memory bus has comparatively

smaller access latency as compared to dram access latency. The computation as

shown in Figure 2.8 is located as first point as the data entry chip and also the

memory controller is an attractive and unexplored research area in this direction.

The prior work has been proposed automatically by combining the arithmetic loads

by making and transferring the data as well as migrating same proposal closer to
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Figure 2.8: A Simple Near Memory Computation Model

the on chip cache. Whereas the data is safe to use for migration which reduces

main memory access but not the cache access latency.

2.5.4 Reducing Latency By Memory Scheduling

According to the order of memory requests services due to the dram row buffer

bank contention there is a large effect on the latency of memory, due to this reason

it may affect on bank contention buffer that purpose the optimization of row buffer

hit rate and data should be bank mapped and also orthogonal to the top memory

scheduling according to their research as shown in Figure 2.8.

2.6 Research Gap

Table 2.2 provides the tabular overview of literature work on the implementation

of runahead execution along with the benchmarks used.
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Figure 2.9: Memory Scheduling In RAM Controller

The limitation of the work (mentioned in Table 2.2) regarding the runahead exe-

cution implementation is that, it has been implemented only on SPEC CPU 2006.

For Recent benchmark, such as SPEC CPU 2017, there is a need to determine

the usage of runahead execution in order to improve performance by computing

complete window stall cycles. As a result, Full Window stall has to be computed

for the current applications and the processor must be characterized based on the

latest benchmark values.

2.7 Problem Statement

The strategies mentioned in previous section for improving latency are capable

of providing outstanding results, but it is every important to keep in mind that

they have a big downside (i.e., substantial resource or processor consumption).

Understanding the importance of resource utilization, there is room to come up

with a method that mitigates the stated limitation. Recognizing the significance

of optimizing the use of available resources, it is necessary to devise a solution (i.e.,
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Table 2.2: Runahead execution based related studies

Year Work Benchmark and Description

2006
Initial Implementation
By Onur Mutlu
[2]

Initial Implementation of runahead execution.
Full Window Stall has been calculated on
SPEC CPU 2006.

2006

Efficient Runahead
Execution
By Onur Mutlu
[31]

Efficiently utilized the runahead period wh-
en processor is running in runahead mode by
disabling FPU and using prefetchers as well.
The processor performance has been categor-
ized based on SPEC CPU 2006 IPC values.

2015

Filtered Runahead
Execution
By Milad Hashemi
[7]

Runahead execution is optimized by adding
runahead buffer and storing dependence chain
of load in it and executing it. The processor
performance has been calculated based on
SPEC CPU 2006 IPC values.

2016
Continuous Runahead
By Milad Hashemi
[8]

Continuous runahead engine is used to rem-
ove the short runahead interval by continu-
ously executing the cache miss chain. The
IPC on SPEC CPU 2006 has been improved.

2018

Precise Runahead
Execution
By Ajeya Naithani
[15]

Precisely executes those instructions in run-
ahead mode that causes full window stall by
instruction slicing. In this technique, norm-
alized execution stall time has been calcula-
ted on SPEC CPU 2006

2021
Vector Runahead
By Ajeya Naithani
[17]

Prefetching entire load chain when the proc-
essor is stalled and execute them in an effici-
ent way. Extra Vector storage buffers are
used. Other Benchmarks are used for IPC
improvement.

finding the opportunity to use runahead execution) that addresses the aforemen-

tioned drawbacks. The need of finding the suitability of using runahead execution

technique in modern processors has emerged for better performance by calculating

full window stall cycles from modern benchmarks i.e. SPEC CPU 2017. However,

it represents latest application challenges and FW stall needs to be calculated for

latest applications.

In this research, full window stall cycles has been calculated and analysed for

SPEC CPU 2017 benchmark suite and the processor characterisation is done based

on these stall values. The recommendation of using runahead execution technique

for the specific application area is also proposed.
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2.8 Summary

This chapter contains the background of different techniques used in this study.

Survey on simulators in which comparison of different type of simulators including

(Functional vs. Timing Simulator), (Application-Level vs. Full-System Simula-

tors) and (Trace-Driven vs. Execution-Driven Simulator) is discussed in detail.

Additionally, an overview of several CPU benchmarks is provided, as well as an

in-depth discussion of the SPEC CPU benchmark. Additionally, it demonstrates

similar work and its limits, which influenced our choice of the suggested study

technique.



Chapter 3

Research Methodology

3.1 Introduction

This chapter aims to describe the proposed research methodology to analyze the

opportunities to enhance the performance using Run-ahead execution in SPEC

CPU 2017.

3.2 Proposed Research Methodology

The flow of the proposed research methodology is illustrated in Figure 3.1. We

have started the experiments with the simulator selection where we performed the

theoretical comparison of number of best simulators and selected the most suitable

simulator (i.e., Sniper 7.0) for further experimentation. After the selection, next

step is to setup the simulator on Linux machine for which we used Ubuntu 16.04.

After that, next step is to deal with the benchmark suites where we have SPEC

CPU 2006 (for validation and verification purpose) and SPEC CPU 2017 for the

implementation of the proposed research methodology.

In order to proceed with the experimentation, the original SPEC CPU 2017 bench-

mark suite which was purchased from SPEC corporation was run inside the simu-

lator. However, we faced few limitation of using the original benchmark including

34
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Simulator Selection
Sniper 7.0 Simulator 

Setup
Run Benchmark Suite 
Inside The Simulator

Run Pinballs Inside 
The Simulator

Simulator Debug 
Environment Setup

Full Window Stall 
Results

Too Long Simulation 
Time

Pseudo Code 
Development

Figure 3.1: Workflow for the proposed methodology

(i) Simulation time for complete benchmark may take hundreds of hours, (ii) The

process needs to be restarted if the simulation is interrupted and (iii) Computer

resource utilization is very high. Pertaining to the issues associated with the use

original benchmark, we introduced Pinballs or simulation points in our work, where

instead of running the complete benchmark, simulation points are produced for

both SPEC 2006 as well as for SPEC 2017 benchmark suites. Due to the reason

that simulation points are the subset of the complete benchmark which mimics

the same behavior, it gives us benefits in terms of time and computer utilization.

Following, we worked on pseudo code development in order to find the full window

(FW) stall and carried out the simulator debug environment setup where we per-

formed some modification task to support the FW stall calculations. As a result,
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we obtained the full window stall outcomes for the specific benchmarks.

We conducted our experiments using accurate interval core model in x86 Sniper

simulator. Sniper simulator is used to run SPEC CPU2006 and SPEC CPU2017

benchmarks on different machine configurations to check the performance.

A simulator is a program that can have customized targeted output to explore

various aspects of a design like functional behavior of the design blocks, resource

utilization summary, power estimations, time and latency estimations etc.

A simulator enables us to check performance of a “To Be Designed” machine prior

to its hardware implementation and an ideal simulator enables an architect to

quickly investigate the design choices and precisely determine their effects on ex-

ecution.

The main purpose of a simulator in case of a microprocessor design is to estimate

the performance of new architecture before its fabrication to save time and money.

Simulators are being used for microprocessor customization since the introduction

of these new devices.

The design space exploration through simulator gives us the idea about the new

design flexibility and throughput. Simulators make processor design and improve-

ment faster and easier. Architecture simulator is irreplaceable for processor ar-

chitects as a tool of processor structure research and golden module for logical

design.

Sniper simulator tool is used in our work with PinPoint (simulation points) to

reduce simulation time as the actual benchmark takes months to run. The sim-

ulated processor use ROB of 128 and 2048 entries. Simulation environment uses

two versions of cache, Real LLC: in which every read/write transactions may hit

or miss the last level cache and Perfect LLC: in which every transaction will hit

in last level cache.

We used SPEC CPU2006 benchmark suite and SPEC CPU2017 benchmark suite

to analyze performance enhancement opportunities in newly released CPU2017

benchmark in comparison with CPU2006 benchmark. We selected 8 integer bench-

marks of CPU2017 among them 4 (leela, exchange2, x264 and xz ) are newly added

[10]. We selected 12 integer benchmarks and 1 floating point benchmark from

CPU2006.
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3.3 Simulator Selection

3.3.1 Overview of Available Simulators

We selected four simulators: MARSSx86, PTLsim, ZSim and Sniper for breif com-

parison. Although these simulators use a variety of different simulation models,

they all come under the umbrella of timing simulators. Except for PTLsim, all

are contemporary simulators under active development. Although PTLsim is no

longer being developed, it is still in use today. Each of these simulators is com-

patible with the x86 and other main architectures. Additionally, they are capable

of doing thorough simulations on specified portions of any benchmark.

3.3.1.1 PTLsim

PTLsim [32] is a cycle-level simulator capable of simulating a whole operating

system using the Xen hypervisor [33]. It employs co-simulation or a direct exe-

cution approach, as previously stated. It has the ability to modify a superscalar

OoO core. It does not provide a thorough representation of the IO pipeline. The

default core model in PTLsim is based on the features of many real-world systems,

including Intel’s P4 and Core 2 processors, and AMD’s K8 CPU.

3.3.1.2 Sniper

Sniper [34] is a high-performance parallel simulator that makes advantage of the

interval simulation technique outlined before [35]. Sniper is built on the Graphite

platform, which allows a variety of one-IPC modes. Sniper is capable of simulating

both OoO and IO pipelines.

3.3.1.3 ZSim

For x86-64 architectures, ZSim [36] is an application-level timing simulator for

ZSim [36]. It started out as a model for ZCache [37] but has evolved into a more
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capable simulator. Memory hierarchies and multiple core heterogeneous systems

(single-ISA) are the primary emphasis. Modeling of OoO and IO pipelines is

supported. It is able to run at very fast speeds because of its extensive usage of

dynamic binary translation. A ZSim validation on an Intel Westmere core found

an average inaccuracy of 10%. In multi-threaded workloads, the average absolute

error is 11.2 percent.

3.3.1.4 MARSSx86

MARSSx86 is a cycle-level x86 full-system simulator [38]. MARSSx86’s compre-

hensive pipeline model is based on PTLsim [32]. Additionally, several optimiza-

tions were introduced to improve efficiency and versatility. MARSSx86 simulates

unmodified operating systems using a full-system emulation environment based on

QEMU [39]. It is compatible with both out-of-order and sequential (IO) pipeline

architectures. MARSSx86 is capable of simulating settings that are diverse. Ad-

ditionally, it permits the emulation of real-time input/output devices.

Among the above mentioned simulators, Marss x86 and sniper simulator have been

shortlisted for further consideration.

3.3.2 Marss x86 Vs Sniper 7.0

Comparitive description of Marss x86 simulator and Sniper 7.0 simulator is given

in Table 3.1

From the table, we can see that the Sniper 7.0 simulator is much efficient and

flexible and have better specifications in terms of support and facilities, it will be

used for further research experimentation in our work. Brief overview of sniper

simulator is given in next section.

3.3.3 Sniper Simulator

Sniper is high speed, parallel and accurate x86 next generation simulator [2]. It

has the functionality to conduct simulations for multi-core processor architectures.
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Table 3.1: Simulator Comparison: Marss x86 vs Sniper 7.0

S. No Marss x86 Sniper 7.0 (x86)
1 Slow (Functional simulator) Fast (Interval Simulator)
2 Kernel level modification Runs in user space

3 Less flexibility
More facilities
(Performance graphs etc.)

4 Low support/EOL More support is available
5 Supported OS: Ubuntu Supported OS: Ubuntu

6
Testing Computer: Core i5,
4th Gen

Testing Computer: Core i5,
4th Gen

It gives fast and accurate simulation for homogeneous and heterogeneous architec-

tures compared with the existing simulators. Sniper relies on internal simulation

which increases the level of abstraction and enables faster simulation and consume

less evaluation time by jumping between intervals [24]. Due to these advantages

we have selected sniper simulator for our experiments.

Sniper simulator is used to run standard benchmarks on different machine con-

figurations to check the performance for comparison among different architecture

designs. Sniper simulator provides visualization of the design contents using the

3D images of different parts of the design like thermal heat maps. Mostly sim-

ulation is used for high-risk experiments, safety test and scientific exploratory

experiments.

Furthermore, Sniper allows the CPI stacks, which presents the number of lost cy-

cles due to system characterization that enable the architect to better understand

the actual performance of each component, and to measure the effectiveness of

each component. SPEC CPU2017 benchmark suite is characterized by the in-

struction mix, branch prediction and cache memory behavior.

In Sniper simulator, parallel execution can be visualized by two representations.

One is CPI stack and the other is Thread-state timelines. We mostly used CPI

stack representation in our work. The processor performance can be represented

by total number of instructions that a specific processor can execute in one clock

cycle, or it can be expressed in term of CPI (Cycles per instruction) which means

average number of cycles an instruction may take. In both ways, we calculate

the execution time of a program (benchmark) to estimate the performance of the

machine [24].
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3.4 Benchmarks Availability

We have selected two SPEC CPU benchmarks (i.e., SPEC 2006 Benchmarks and

SPEC 2017 Benchmarks) for the implementation and validation of the proposed

methodology.

3.4.1 SPEC 2006 Benchmarks

Generally, a benchmark is used to to evaluate the performance of a machine. A

benchmark characterizes application sets that the end user want to run on the

machine. A benchmark perform the set of operation that are well defined and

according to standards. These benchmarks are generalized form of many real

applications. The end user can easily predict the performance of a machine by

analyzing the performance of that machine on standard benchmarks.

We used SPEC CPU2006 and SPEC CPU2017 benchmarks to evaluate the perfor-

mance and finding the opportunities to enhance the performance by implementing

runahead execution in SPEC CPU2017. In our work, we selected 12 integer bench-

marks and 1 floating point benchmark from CPU2006. Figure 4.8 shows load, store

and branch instruction percentage in Instruction window. Different colors are used

to clearly identify the relative percentages of these instructions. Blue color repre-

sents load instructions, red color shows store instructions while green color reveals

branch instructions along with their respective percentages.

Figure 4.8 is helpful in presenting the comparison of these benchmarks with that

of SPEC CPU2017. Performance enhancement opportunity using runahead execu-

tion is more in the benchmarks in which more load instructions are being used.The

processor fetches the data from memory using the load instruction whenever there

is a last level cache miss. More the load instructions are in the application, more

the beneficial will it be to use the runahead execution.

It can be seen from the figure that highest percentage of load instructions is in

hmmer benchmark having 47.36 percent load instructions while the lowest per-

centage of load instructions can be seen in perlbench benchmark having 27.99

percent load instructions.
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3.4.2 SPEC2017 Benchmarks

SPEC CPU2017 benchmark is the latest released benchmark by Standard Per-

formance Evaluation Corporation that generalized a number of advanced appli-

cation set and computing algorithms to check the performance of machines hav-

ing the load of many memory subsystem and intensive computation of industry-

standardized applications. A number of changes occurred with reference to ad-

vancement in applications in SPEC CPU2017 benchmark compared with SPEC

CPU2006 benchmark. Performance enhancement analysis after implementation of

runahead execution in SPEC CPU2006 is discussed in literature review.

Our work focused on finding the opportunities of runahead execution for improved

performance in SPEC CPU2017. We observed that performance index depends

on number of load, store instructions that excess the memory. Whenever there is

a high level cache miss, the processor has to access main memory and causes stall

while, runahead execution prevents these stall by running ahead in the instruction

window and executing multiple memory instructions in parallel, so that the data

from memory is prefetched before its requirement.

We selected 8 integer benchmark of CPU2017 among them 4 (leela, exchange2,

x264 and xz ) are newly added [10]. In the core comparison, we used Mcf, Om-

netpp, Perlbench and Gcc benchmark of SPEC CPU2006 and SPEC CPU2017

which can be visualized in this graph.

This graph shows load, store and branch instruction percentage in Instruction

window. Different colors are used to clearly identify the respective percentages

of the instructions. The load instruction directly effect the LLC, so higher load

instruction percentage will result in higher efficiency via runahead execution mode.

3.4.3 Drawbacks of Using Original Benchmarks

There are a few limitations to employing the original benchmarks for research

purposes. Listed below are the drawbacks that apply:

1. Simulation time for complete benchmark may take hundreds of hours.
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2. The process needs to be restarted if the simulation is interrupted.

3. Computer resource utilization is very high.

Pertaining to the above mentioned constraints, we will move toward the concept

of Pinball or simulation points.

3.5 Pinball/ Simulation Points

In general, the Simulators require a binary scheme as an input. Numerous big,

fascinating programmes, on the other hand, need complicated execution environ-

ments that are difficult to configure in combination with a simulator. Additionally,

it can sometimes be impossible to simulate whole runs of long-running applications

in detail. To address these problems, the ”Pinball” (i.e., the user-level check-point

structure) plays a vital role.

Pinball is generated and consumed via the use of a framework called PinPlay [40]

that is based on dynamic instrumentation. It consists of two pin-tools: (i) a logger

that records the initial architectural state and non-deterministic events happening

during programme execution in a collection of files termed a pinball; and (ii) a

replayer that operates on a pinball and repeats the recorded programme execution.

The replayer may be used in conjunction with a simulator to simulate a game using

a pinball rather than a binary set of instructions. A pinball may be built for the

whole of a program’s execution (a whole-program pinball) or for any interesting

portion of execution (a region pinball). Using region pinballs to simulate huge

programmes may significantly cut simulation time. It is compatible with both 32-

and 64-bit x86 operating system binaries and no source code or special linkage is

required.

There are numerous fascinating aspects to the pinball format:

1. A pinball is system-independent.

2. A pinball is self-contained, which means that it does not need the software

binaries, input files, or specific licensing for playback.
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3. A pinball is a compact system as compared to the overall simulator.

Computer architects often run the SPEC CPU2006 and SPEC CPU2017 bench-

marks, which employ sniper simulators. Single-threaded CPU-intensive applica-

tions make up the simulators. The natural run-time of these programmes is in

the range of a few seconds to a few minutes, depending on the inputs. Simulator

applications that need cycle-accurate simulations might take months to execute

on existing CPUs.

We utilised the PinPoints technique to identify portions of these programmes that

were reflective of their simulations and used the PinPlay logger to construct pin-

balls for those places. In order to determine the quality of representative area

selection, sniper simulator was used to compare whole-program simulation results

with those anticipated by PinPoints pinball simulation. It saves us both time and

money in the long run.

3.6 Calculation of Full Window Stalls

Full window stall occurs when the instruction at the top of the ROB blocks it due

to a LLC miss [2]. We have designed the program to calculate the full window stall

cycles by getting to know the architectural state of the processor when the stall

occurs. Flow diagram of the algorithm to calculate the full window stall cycles

is shown in Figure 3.2. Initially, when the benchmark starts execution inside the

sniper, the program will check whether the last level cache is missed or not. If

it is missed, then it will check whether the instruction gets full and is blocked or

not. If the instruction window is not blocked then it will wait for the return of the

cache miss and check the instruction window blocking. If the instruction window

is blocked, it will check for the instruction types which are present at the top of

the ROB (The instruction which is blocking the queue) and check if it is a load

instruction. We have only checked the load instruction because it is verified from

our experiments that almost 98% of the time, it is load instruction that is causing

the full window to get stalled in terms of cycles. When the program detects that

the load instruction is blocking the queue, it will check the time and store it in
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terms of cycles. When the cache miss is serviced, the cycles count is calculated

and stored.

This process is repeated until the end of the program and all of the cycles are ac-

cumulated that are being calculated when the ROB is full. From the flow diagram

shown in Figure 3.2 the C program to find the full window stall is written and is

shown in Figure 3.3. In this way, the full window stall cycles are calculated by

executing the SPEC CPU 2006 as well as SPEC CPU 2017 benchmark suites.

Figure 3.2: Flow Diagram of Algorithm
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Figure 3.3: C Code Snippet

3.7 Summary

The opportunities of runahead execution in the benchmarks are related to the

proportion of memory access instructions that causes the stalls in instruction win-

dow. In order to determine the severity of these stalls in different benchmarks,

their analysis is performed and described in this chapter with the help of graphical

representations. The graphs shows each benchmark with their respective percent-

ages of load, store and branch instructions. The Full window stall percentages of

the benchmarks are discussed along with their graphs. The usefulness of runahead

execution is summarized in this chapter.
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Simulation Model and Results

This section analyzes the performance of processors with different machine con-

figurations with respect to full-window stalls using SPEC CPU2006 and SPEC

CPU2017 integer benchmarks. Machines with 128 and 2048 ROB entries along

with real and perfect LLC is being tested in sniper simulator [23]. SPEC CPU2006

benchmark suites shows that it spends up to 68.1% of its cycles in full-window

stall with respect to total cycles.

The results of full window stall in SPEC CPU2006 benchmark verifies the out-

comes from [2]. Performed same experiment but now by reducing the memory

latency by making LLC perfect and established that full-window stall cycles are

now 78.5% [5]. This indicates that main memory access latency is the major bot-

tleneck in processor performance. We also investigated that how much of load,

store, execute and branch instructions are causing full-window stall.

If we look at the instructions stucked at the top of ROB whenever full window

stall occurs then it looks like 29.8% of load instructions, 12.43% of store instruc-

tions and 15.21% of branch instructions are responsible for full-window stall for

real LLC. If we talk about the number of cycles an instruction spends blocking

the instruction window then we see that 98% of the time, the full window stall

is caused by load instructions in which processor access main memory and takes

hundreds of times more cycles than other instructions. While for perfect LLC

the number of full-window stall cycles are less with same configuration parame-

ters, calculated number of full window stall cycles using SPEC17 benchmark suite.

46
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Evaluation of new micro-architectural designs is highly important. Different bench-

marks are used by computer architects to validate and improve the micro-architectural

designs.

For computer architects the Standard Performance Evaluation Corporation(SPEC)’s

5th generation benchmark suite, known as SPEC CPU2006 and SPEC CPU2017,

are the de facto benchmark suites for their processor design analysis [9]. However

the newly released SPEC CPU2017 benchmark has gained attention because of its

large workloads and instruction mix [10].

SPEC CPU2017 has remodeled benchmarks of SPEC CPU2006 and also added

new workloads to meet modern application demands. The coverage area of SPEC

CPU2017 is much more than that of SPEC CPU2006 in terms of workload design

space [11]. These complex workloads are responsible of very high percentage of

full-window stall. We analyzed the runahead execution opportunities for perfor-

mance enhancement in SPEC CPU2017, compared it with the SPEC CPU2006

integer benchmarks and investigated full-window stall by increasing the size of

ROB to 2048 entries and by making the LLC perfect.

4.1 Algorithm Validation

The values of full window stall has been calculated for SPEC CPU 2006 to validate

our algorithm by comparing our results with the older values that researchers has

produced. We have compared our obtained values with the findings reported by

Naithani et al. [15].

4.1.1 Machine Configuration

This section contains the machine configurations used for the experiments. These

configurations describes the parameters to build the machine environment in which

the sniper simulator worked to find the basic run ahead execution opportunity for

SPEC CPU 2006. The machine configuration used is the same as mentioned in

the [15] so that our simulation environment matches each other.
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Table 4.1: Machine configuration as mentioned by Naithani et al. [15]

Parameter Value

Frequency

Type

ROB Size

Issue Queue Size

Load Queue Size

Store Queue Size

Micro-op Queue Size

Pipeline Width

Pipeline Depth

Branch predictor

2.66 GHz

Out of order

192

92

64

64

28

4

8 stages (front-end only)

8 KB TAGE-SC-L

Functional units

3 int add (1 cyc), 1 int mult (3 cyc),

1 int div (18 cyc), 1 fp add (3 cyc),

1 fp mult (5 cyc), 1 fp div (6 cyc)

Register file
168 int (64 bit)

168 fp (128 bit)

L1 I-cache

L1 D-cache

Private L2 cache

32 KB, assoc 4, 2 cyc

32 KB, assoc 8, 4 cyc

256 KB, assoc 8, 8 cyc

Shared L3 cache 1 MB, assoc 16, lat 30 cyc

Memory

DDR3-1600, 800 MHz

Ranks: 4, banks: 32

Page size: 4 KB, bus: 64 bits

tRP-tCL-tRCD: 11-11-11

4.1.2 SPEC CPU 2006 Comparison

Figure 4.1 shows that the value of benchmark libquantum is 75%, whereas Figure

4.2 shows that the value of libquantum is 78%, which is almost same. Addition-

ally, the benchmark mcf and omnetpp values are 9% and 47%, respectively (see
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Figure 4.1).

These numbers are almost identical to the benchmark values reported in the liter-

ature (see Figure 4.2), i.e., 8% and 50% for mcf and omnetpp, respectively. Since

the implemented work produces the same results as the literature when equivalent

parameters are used, the method is successfully validated.

Figure 4.1: SPEC06 Full Window Stall

Figure 4.2: Precise Runahead Execution Stall Values [15]
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4.2 SPEC CPU 2017 and SPEC CPU 2006 Full

Window Stall

This section provides the full window (FW) stall estimation for SPEC CPU bench-

marks (i.e., 2006 and 2017). In addition, it also incorporates the machine config-

urations used for the experiments. These specifications provide the parameters

that will be used to create the machine environment necessary to identify run

ahead execution opportunities for both benchmarks. Additionally, a portion gives

a comparative study of FW stalls for both benchmarks.

4.2.1 Machine Configuration

Machine configuration in terms of processor parameters and memory parameters

for full window stall estimation using SPEC CPU 2006 and SPEC CPU 2017

are given in below sections. We have taken the machine configuration same as

mentioned in [2].

4.2.1.1 Processor Parameters

Processor configuration parameters are shown in table 4.2.

Table 4.2: Processor Configuration Parameters [2]

S. No Parameter Value

1 Processor Frequency 4 GHz

2 Instruction Window Size 128

3 Branch Misprediction Penalty 29 stages

4 Fetch/Issue/Retire width 3

5 Scheduling Window Size 16 int, 8 mem, 24 fp

6 Load Store Buffer Size 48 load, 32 store

7 Branch Predictor 1000 entry

8 Data prefetcher 16 streams

9 Memory Disambiguation perfect
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4.2.1.2 Memory Parameters [2]

Table 4.3 shows the memory configuration in finding the importance of runahead

execution opportunities in SPEC CPU2006 and SPEC CPU2017 benchmarks.

Table 4.3: Memory Configuration Parameters

S. No Parameter Value

1 L1 Data cache 32 KB, 8-way

2 L1 Data cache Hit Latency 3 cycles

3 L1 Data cache bandwidth 512 GB/s

4 LLC Cache 512 KB, Real

5 Bus latency 495 processor cycles

6 Bus bandwidth 4.25 GB/s

7 Max pending Bus Transactions 10

4.2.2 SPEC CPU 2006 Full Window Stall

The instruction stream or list of operations can not be retired from the Instruction

Window until the long latency instructions are not executed completely. So if the

instruction window is not large enough it will be full and cause a stall in case

of fetching data from main memory. Once the instruction window is full, new

instructions cannot be placed into the window. It is called full window stall.

Figure 4.3 represents the full window stall situation for the 3 integer benchmarks

which are selected from SPEC CPU2006. The Full window stall along with load

instruction percentage of individual benchmark makes the way for runahead mode

[13]. The Runahead execution paradigm is presented in this report which is a

micro architectural technique to improve the performance of processor by utilizing

long latencies.

The work presents the runahead execution in context of efficient high performance

out-of-order execution processors, its pros, cons and limitations are presented in

this report. It is a technique which allow the processor to detect the cache miss

cycles instead of stalling which is done by data stream prefetches instructions
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through this it detect the miss cycle before the actual execution of that instruction

so the processor may save from stalls.

Figure 4.2 is taken from [15] which shows that the full window stall generated

from old research is same as shown in Figure 4.3. In this way, we have validated

our algorithm to find the stall from different benchmarks.
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Figure 4.3: SPEC CPU 2006 Full Window Stall

4.2.3 SPEC CPU 2017 Full Window Stall

The full window stalls shown in Figure 4.4 can be avoided by using the runahead

execution technique. Figure 4.4 is the visualization of 8 benchmarks full window

stall which are selected from SPEC CPU2017. Four of them are newly introduced

in 2017 while other four including mcf, Perlbench, Omnetpp, gcc are used for the

comparison between SPEC CPU2006 and SPEC CPU2017.

This representation enables us to visualize the percentages of load, store and

branch instructions in SPEC CPU2017 for the above-mentioned benchmarks. The
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benchmark having high LLC and higher Full window stall percentage make more

opportunity for run ahead execution.

0

10

20

exchange2 gcc leela mcf omnetpp perlbench x264

Fu
ll 

W
in

d
o

w
 S

ta
ll 

P
er

ce
n

ta
ge

 (
%

)

Benchmark Name

Load Store Branch Execute

0

10

20

30

40

50

60

70

80

gcc leela mcf omnetpp perlbench x264 xz

Fu
ll 

W
in

d
o

w
 S

ta
ll 

P
er

ce
n

ta
ge

 (
%

)

Benchmark Name

CPU 2017 Full Window Stall

Load Store Branch Execute

Figure 4.4: SPEC CPU 2017 Full Window Stall

4.2.4 FW Stall Comparison of SPEC06 vs SPEC17

This section shows the full window stall percentages of the selected integer bench-

marks. Main memory access latency is the key bottleneck to improve the per-

formance of a processor. Out of order processing tolerates these long latencies,

provided that instruction commit will be done in program order to handle precise

exceptions, by buffering the instructions in instruction window. The instruction

stream or list of operations could not be retired from the Instruction Window until

the long latency instructions are not executed completely.

So if the instruction window is not large enough it will be full. Once the window is

full, new instructions cannot be placed into the window and it causes a full window

stall. It stops the processor to move to the instructions that are not dependent on

the long latency in the window.

One way to resolve it is to increase the size of instruction window but it becomes

challenge-able because of complexity of design, difficulty in verification, power

consumed by large instruction window and increased cost [5].
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It also has drawback of critical path increased in quadratic way with the instruc-

tion window size due to the delays and complexity of many hardware structures

[5]. Those out of order processor needed VLIW (Very Large Instruction Window)

to handle memory lateness [11]. However instruction window eventually becomes

full if top of the instruction window has long-latency instructions resulting in full-

window stall. Figure 4.5 describes the comparison of the integer benchmarks of

SPEC CPU2017 and SPEC CPU2006.
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Figure 4.5: Full Window Stall Comparison of SPEC06 and SPEC17

In case of GCC benchmark, the percentage of full window stall is 67.44% in SPEC

CPU2017 while in SPEC CPU2006 the full window stall percentage is 40.32% as

shown in Figure 4.3. The reason is that GCC benchmark has high percentage of

cache misses which in result force the processor to fetch data from main memory

and leads to full window stall in instruction window stream.

In perlbench the load instruction percentage in SPEC CPU2017 is 27.34% while

that of in SPEC CPU2006 is 28.21% which is slightly greater then that of SPEC

CPU2006 as shown in Figure 4.4. However, results shows that SPEC CPU2017

have high percentage of full window stall i.e., 13.9% than that of SPEC CPU2006

i.e., 9.9. So perlbench is the benchmarks which has more full window stalls

in SPEC CPU2017 and has more runahead execution opportunities in SPEC

CPU2017 to increase the processor performance. The perlbench of SPEC CPU2017

has 13.9% full window stall cycles which is almost same as of SPEC CPU2006.
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Omnetpp has 34.71% of load instructions in SPEC CPU2006 while 22.76% of load

instructions in SPEC CPU2017 as shown in the figure 4.5.

The mcf benchmark has 37.99% of load instructions in SPEC CPU2006 whereas

18.55% of load instructions in SPEC CPU2017.

Omnetpp has 31% full window stall as compared to which is almost the same as

in SPEC CPU2006. But, mcf has low full window stall for SPEC CPU2017 as

compared to SPEC CPU2006. It is not recommended to use runahead execution

enabled processor for mcf based applications.

4.2.5 Instruction Type Occurrences When ROB is Stalled

Another experiment has been carried out to better understand the differences be-

tween SPEC CPU2006 and SPEC CPU 2017. Research conducted by previous

academics has shown that the sole reason for stalling is due to load instructions

that causes LLC misses [2].

We confirmed this by doing an experiment to see whether the instances of the

instruction type at the top of the ROB are saved every time the processor goes

into halted mode.

As seen in Figures 4.3 and 4.4, the execute instruction is often located at the top

of the ROB most of the time. The reason for this is that the entire window stall

happens for a little amount of time as well.

However, we computed the total number of window stall cycles in terms of instruc-

tion types and their cycle count. We discovered that 98 percent of full window

stalls are caused by load instructions. Other instruction instances are brief and

may be disregarded.

4.3 SPEC CPU2017 IPC Comparison

The purpose of this section is to validate the obtained result of instructions per cy-

cle (IPC) from SPEC CPU 2017 benchmarks with the available results in literature

[31] using the machine configurations stated below.
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4.3.1 Machine Configuration

Table 4.4 details the machine setup used for the SPEC CPU 2017 IPC comparison.

It contains information on parameters such as a shared front-end, shared memory

system, out of order (OoO) back-end and In order (InO) back end.

Table 4.4: Machine configuration parameters for IPC analysis [31]

S. No Parameters

1 Shared Front End

4-way fetch and decode

G share branch predictor

32 KB 4-way L1 instruction cache

128-entry ITLB

2 Shared Memory System

32 KB 8-way L1 data cache (3-cycle)

256 KB 8-way L2 data cache (9-cycle)

2 MB 16-way L3 data cache (35-cycle)

Main memory (66 ns)

64-entry L1 DTLB

512-entry L2 TLB

L1 and L2 stride data prefetcher

3 OoO Back End

4-way out-of-order back end

128-entry ROB

48- entry load queue

32-entry load queue

36- entry load queue

4 InO Back End 4-way in-order back end

4.3.2 IPC Comparison

Figure 4.7 is obtained from previously published work [31], where the researcher

has used nine different benchmarks to analyze IPC in both out of order and in

order processors. However, we used only 4 benchmarks (i.e., perlbench, gcc, mcf
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and omnetpp) for the analysis of IPC for OoO processor only with SPEC CPU

2017 (see Figure 4.6).

As seen from Figure 4.6, perlbench has the value of 1.58 which is closer to the value

(1.65) reported by the previous work as seen in Figure 4.7. Similarly, gcc, mcf and

omnetpp from our work in Figure 4.6 has the value of 0.9, 0.6 and 0.42 against

the almost equal values of 0.8, 0.7 and 0.5 for gcc, mcf and omnetpp, respectively,

as mentioned in reference study (see Figure 4.7).

Figure 4.6: SPEC CPU 2017 IPC Graph

Figure 4.7: IPC of an InO an OoO processor with-out RAE [31]
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4.4 Full Window Stall With Different Machines

Configuration

This section provides the machine configuration for FW stall to verify the results

reported in the literature. The processor configuration parameters and the memory

configuration parameters are given in Table 4.5, and Table 4.6, respectively.

Table 4.5: Processor Configuration Parameters

S. No Parameter Value

1 Processor Frequency 4 GHz

2 Instruction Window Size 2048

3 Branch Misprediction Penalty 29 stages

4 Fetch/Issue/Retire width 3

5 Scheduling Window Size 16 int, 8 mem, 24 fp

6 Load Store Buffer Size 48 load, 32 store

7 Branch Predictor 1000 entry

8 Data prefetcher 16 streams

9 Memory Disambiguation perfect

Table 4.6: Memory Configuration Parameters

S. No Parameter Value

1 L1 Data cache 32 KB, 8-way

2 L1 Data cache Hit Latency 3 cycles

3 L1 Data cache bandwidth 512 GB/s

4 LLC Cache 512 KB, Perfect

5 Bus latency 495 processor cycles

6 Bus bandwidth 4.25 GB/s

7 Max pending Bus Transactions 10

We have conducted another experiment to verify the results from literature work

[2]. He has used 2 machine configurations in his experiments. One is the real
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machine and another one is the perfect one. We have used the perfect machine

configuration here for SPEC CPU2017 benchmarks to validate the findings. For

this purpose, ROB size is increased to 2048 by keeping LLC to real, we have seen

that the full window stall cycle will become zero. Additionally, if we optimise

the LLC and limit the ROB to 128 entries, whole window stall cycles will be

eliminated. Thus for SPEC CPU 2017, it is deduced that if we increase the ROB

size or make the LLC cache to be perfect, the full window stall problem will be

resolved.

4.5 Instruction Mix Comparison of SPEC17 and

SPEC06

The reason behind the comparison of instruction mix is the huge difference of full

window stall values between SPEC CPU 2006 and SPEC CPU 2017. As previ-

ously, we have verified that the full window stall cycles are 98% percent of the

time is due to load instruction. One might think, that the benchmark that does

have a large load instructions it it will have large full window stall value. But it

is not as expected, the benchmark with large load instruction can also have low

full window stall values. So, it is better to have a comparison of instruction type

percentage in each of the benchmark for SPEC CPU2017 and SPEC CPU2006

suites. In this way, we can better analyze the characteristics of the benchmark.

The opportunity to get enhanced performance using runahead execution relies

mainly on the proportion of memory access instructions in the benchmark. Figures

4.10, 4.11, 4.12 and 4.13 presents the individual comparison of these benchmarks.

In the core comparison we used Mcf, Omnetpp, Perlbench and Gcc benchmark of

SPEC 2006 and SPEC 2017 which can clearly be visualized in this graph. This

section contains the load instruction percentage of each benchmark and compare

SPEC CPU2017 with SPEC CPU2006.

The GCC has 40.32% load instructions in SPEC CPU2017 and 26.52% load in-

structions in SPEC CPU2006. In the same manner, Omnetpp has 22.71% load

instructions in SPEC CPU2017 and 34.71% load instructions in SPEC CPU2006
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[5]. Likewise, Perlbench has 27.2% load instructions in SPEC CPU2017 and

27.99% in SPEC CPU2006. Similarly, the Mcf has 18.55% in SPEC CPU2017

and 37.99% in SPEC CPU2006 [14].

This graph is derived from the individual benchmark graph for instruction mix.

This method is used for not only finding the subsets from any benchmark but to

check the similarities and differences in these benchmark suite to find the poten-

tial of improvement in performance [12]. It will be used to conclude individual

benchmark support for runahead execution opportunities.
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4.5.1 MCF Instruction Mix Comparison

Mcf benchmark of SPEC CPU2006 has 37.99% of load instructions while SPEC

CPU2017 has 18.55% of the load instructions. So, Mcf suite of SPEC CPU2006

provides more runahead execution opportunity than that of SPEC CPU2017.

Statistics of other memory access instructions are also high in SPEC CPU2006

than in SPEC CPU2017 e.g. in case of mcf, the percentages of store and branch

instructions in SPEC CPU2017 are 4.7% and 12.53%, respectively. While, in case

of SPEC CPU2006, the percentages of store and branch instructions are 10.55%

and 21.17%, respectively. Runahead execution opportunities can be seen in Figure

4.10.
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Figure 4.10: Instruction Mix Comparison of MCF

4.5.2 Omnetpp Instruction Mix Comparison

This benchmark contain 34.71% of load instructions in SPEC CPU2006 while

22.76% of load instructions in SPEC CPU2017. So this benchmark has more

chance of LLC in SPEC CPU2006 while using runahead execution prefetching

execution strategy, we got 34.71 percent usage of load instructions. Similarly, the

percentages of store and branch instructions are 20.18% and 20.33%, respectively,

in SPEC CPU2006 while the percentages of store and branch instructions in SPEC

CPU2017 are 12.65% and 14.55%, respectively. The comparison of omnetpp in

both SPEC CPU2006 and 2017 can be visualized in the Figure 4.11 for analysis

of performance enhancement using runahead execution.
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Figure 4.11: Instruction Mix Comparison of OMNETPP

4.5.3 PERLBENCH Instruction Mix Comparison

Perlbench benchmark of SPEC CPU2006 has 27.99% of load Instructions while

SPEC CPU2017 has 27.2% of load instructions in perlbench. So, perlbench bench-

mark of SPEC CPU2006 provides more runahead execution opportunity than that

of SPEC CPU2017. On the other hand, the percentages of store and branch in-

structions are 16.73% and 18.16%, respectively in SPEC CPU2017.

The percentages of store and branch instructions in SPEC CPU2006 are 16.45%

and 20.96%, respectively. Runahead execution opportunities depending upon pro-

portion of memory access instructions can be visualized from the Figure 4.12 for

both SPEC CPU2006 and 2017.

4.5.4 GCC Instruction Mix Comparison

GCC benchmark contain 40.32% of load instructions in SPEC CPU2017 where

as the percentage of load instructions in GCC benchmark of SPEC CPU2006 is

26.52%. so, runahead execution for pre-fetching execution from the main instruc-

tion window will be more beneficial in SPEC CPU2017 in case of GCC benchmark.

Similarly, GCC for SPEC CPU2006 has 16.01% of store instructions and 21.96%

of branch instructions whereas GCC for SPEC CPU2017 has 15.67% of store

instructions and 15.6% of branch instructions. It can be visualized in Figure 4.13.
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Figure 4.12: Instruction Mix Comparison of PERLBENCH
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Figure 4.13: Instruction Mix Comparison of GCC

4.6 Processor Characterization for FW Stall Val-

ues

We have seen the huge difference between the full window stall values of SPEC

CPU2006 and SPEC CPU2017 benchmarks. As SPEC CPU2017 benchmark is the

successor of SPEC CPU2006. Therefore, the full window stall values for SPEC

CPU2017 needs to be considered for processor characterization. We are propos-

ing a processor characterization table in which the recommendation of using the

runahead execution enabled processor is given based on the FW Stall values.

Table 4.7 provides the recommendation of runahead execution in accordance with

the FW stall and the application area. Using the Omnetpp, 31% full window stall
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has been reported and runahead execution has been recommended. While 67.44%

FW stall was reported by GCC and runahead execution has been recommended.

In contrast, Leela, X264 and MCF has the full window stall of less than 3%, less

than 5% and less than 5%, respectively. So, the runahead execution has not been

recommended for any of them.

Table 4.7: Runahead execution recommendation table

S. No Application Area
Full Window

(FW) Stall

Runahead

Recommendation

1
Omnetpp

(Discrete Event Simulation)
31% Yes

2 GCC (Compiler) 67.44% Yes

3 Leela (Artificial Intelligence) <3% Not Recommended

4 X264, xz (Compression) <5% Not Recommended

5
Mcf

(Combinational Optimization)
<5% Not Recommended

4.7 Summary

This chapter contains the simulator configuration with all its configuration pa-

rameters for the machine which have used for the experimentation. Results of

individual benchmarks are presented and explained in this chapter. By reviewing

the chapter, it is concluded that there are some benchmarks like gcc, omnetpp and

perlbench have full window stall occurrences greater as compared to other bench-

marks due to sparse data locality and accesses. All the other benchmarks does

not have too much full window stalls which implies that the runahead technique

for these type of applications will not be suitable.



Chapter 5

Conclusion and Future Work

SPEC CPU 2017 is the successor of SPEC CPU 2006 that represents the mod-

ern applications i.e. compiler, artificial intelligence, discrete event simulation etc.

Previously there was no work available for the processor characterization based

on the full window stall cycles for latest benchmark suites i.e., SPEC CPU 2017.

We have reproduced the full window stall values for the old benchmark i.e. SPEC

CPU 2006 and validated it by comparing the values with the previous literature.

After the validation of the algorithm we used for the full window stall calculation,

the stall values are then calculated for SPEC CPU 2017 benchmark suite. This

thesis concludes that the full window stall occurrences in SPEC CPU2017 is less

as compared to the SPEC CPU2006. Our results indicates that these modern

workloads have a very high percentage of full window stall cycles in some specific

benchmarks like gcc (67%) and omnetpp (31%) but mostly the stall cycles are

very low for rest of the benchmarks i.e., perlbench (12%), xz (6%), x264 (5%), mcf

(4%), leela (2%). The characterization of the microprocessor is done based on the

calculated full window stall percentage. It concludes that if the processor is to

be used in the discrete event simulation or compiler based application domains, a

runahead enabled processor is recommended for better performance. On the other

hand, if the domain of application resembles mostly with compression, artificial

intelligence and combinational optimization then runahead enabled processor will

not be the optimal choice. As a result of it, the resource utilization of the processor

will be more efficient and also the power consumption will be optimized.

65
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5.1 Future Work

We were limited to use the provided simpoints for the specific benchmarks for

SPEC CPU2017 at that time. Due to which the experimentation is being done on

selected benchmarks from SPEC CPU2017. Once the simpoints will be available

for other benchmarks which includes floating point benchmarks too, can also be

used for the experimentation. In this way, all the benchmarks for SPEC CPU2017

can be tested and full window stall can be calculated for all of them. Feasibility

of using runahead technique can also be further explored for these benchmarks.
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